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ABSTRACT 

Let P(x,y,n) be a real polynomial and let {G, } be a family of graphs, where 
the set of vertices of G, is (1.2,. . . ,n} and for 1 I i < j’ 5 n {;,I] is an 
edge of G, iff P(i, j ,n) > 0. Motivated by a question of Babai, we show 
that there is a positiye constant c depending only on P such that either G 
or its complement G, contains _a complete subgraph on at  least c2 
vertices. Similarly, either G, or G, contains a complete bipartite subgraph 
with at  least cntn vertices in each color class. Similar results are proved for 
graphs defined by real polynomials in a more general way, showing that 
such graphs satisfy much stronger Ramsey bounds than do random 
graphs. This may partially explain the difficulties in finding an explicit con- 
struction for good Ramsey graphs. 

In& 

1. INTRODUCTION 

All graphs considered here are finite, undirected, and simple. A graph G is 
called p-Ramsey if neither G nor its complement G contains a complete 
graph K p  on p vertices. Similarly, G is called (p,q)-bipartite Ramsey if 
neither G nor 6 contains a complete bipartite graph Kp,q with classes of 
vertices of sizesp and q. The well-known theorem of Ramsey ([9], see also, 
e.g., [S]) asserts that no graph on n vertices is 1/2 log n-Ramsey. (Here, and 
throughout the paper, all logarithms are in base 2, unless otherwise speci- 
fied.) On the other hand, Erdos proved in [4] that there are graphs on n 
vertices that are 2 log n-Ramsey. This proof was one of the first applica- 
tions of the probabilistic method in Combinaforics and it does not supply 
an explicit construction of such graphs. In fact, the problem, a prize for 
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whose solution is offered by Erdos in [5],  ot constructing explicitly,’ for 
some constant c > 0, a family of graphs {G,}, where G, has n vertices and 
is c log n-Ramsey, is still open, although it received a considerable amount 
of attention. The best known construction, due to Frank1 and Wilson ([7]) 
supplies graphs on n vertices that are &logn ‘w lT“-Ramsey for some c > 0. 
The situation for bipartite Ramsey graphs is even worse; to the best of our 
knowledge, although the probabilistic method easily implies the existence 
of graphs on n vertices that are (clog n, clog n)-bipartite Ramsey for some 
c > 0, there is no known explicit construction of graphs on n vertices that 
are, say, (n’”’, n””)-bipartite Ramsey. (It is worth noting, though, that the 
Paley graphs form an explicit family of graphs on n vertices that are, for ex- 
ample, (1/4 log n,  (1 + o (1)) n3’4)-bipartite-Ramsey but the construction of 
a (p, q)-bipartite-Ramsey graph where both p and q are small seems much 
more difficult). 

In an attempt to understand the difficulty in finding an explicit construc- 
tion of good Ramsey graphs, i.e., graphs on n vertices that are clogn- 
Ramsey, Babai conjectured that such graphs cannot be defined by real 
polynomials. In fact, he made the following conjecture that asserts that 
such graphs satisfy much stronger Ramsey bounds than do random graphs: 

Conjecture 1.1 (Babai [3]). Let {G,} be a family of graphs defined by the 
real polynomial P(x,y,n) as follows: The set of vertices of G, is 
{1,2,. . . ,n}. For 1 I i < j I n,  {i,j} is an edge of G, iff P(i,  j ,n) > 0. 
Then there is a positive constant c,  depending only on P, such that for every 
n, G, is not a cnE-Ramsey graph, where E is a positive absolute constant. 

Notice that if for example, we define P ( x , y ,  n) = ( x  - y)’ - n, then the 
resulting graphs G, will be O(V&)-Ramsey and hence E must be at most 1/2 
in the above conjecture. 

At the moment we are unable to settle this conjecture, as stated. On the 
other hand, we can prove the underlying idea suggested by it by showing that 
graphs defined by a polynomial as above cannot be good Ramsey graphs; 
in fact, G, is not a (Ah, c6)-bipartite-Ramsey graph and it is also not 
a ~’2l’~--Ramsey graph for appropriately chosen positive constants c and 
c’ depending on P. Moreover, a similar result holds even if we allow the 
vertices to be represented by arbitrary l-tuples of real numbers and allow 
several real polynomials instead of one. In order to state our precise results 
we need one more definition. 

Definition 1.2. Let P = (Pl,  Pz, . . . , A) be a sequence of k real polynomi- 
als, where each P, = P,(x,y,n) with x,y E R’ is a polynomial in the 
21 + 1 variables x = ( x I , .  . . , x , ) , y  = (y l , .  . . , y,) and n. A graph G, on n 
vertices ul,.  . . ,un is an l-P-polynomial graph (or simply a P-graph) if there 
is a sequence zl, z 2 ,  . . . , Z, E R’ of 1-tuples of real numbers and a set S of 
vectors in {-l,O, l}k, such that for each 1 I i < j I n,  {ui, u j }  is an edge 



RAMSEY GRAPHS AND REAL POLYNOMIALS 653 

of G, iff there is a vectors = (s I ,  . . . , sk) E S such that sign (P,(zi, z, , n)) = 
sm for all 1 I i 5 k .  

Thus, a graph is a polynomial graph if the existence or the nonexistence 
of each of its edges is determined by the signs of a given set of real polyno- 
mials evaluated at the values corresponding to the end points of that edge. 
In particular, the graphs G, considered in Conjecture 1.1 are I-P graphs for 
P = (P(x ,  y, n)), where the sequence zl, . . . , Z, is simply 1,2,. . . , n and the 
set S consists of the single one-dimensional vector 1. 

In this paper we prove the following three theorems. The first two show 
that polynomial graphs cannot be good Rarnsey graphs, and the third 
shows that in certain special cases Conjecture 1.1 is valid. 

Theorem 1.3. Let P be a sequence of k real polynomials in x , y  and n, 
where x , y  E R‘. Then there exists a positive constant c = c(P) such that 
for every I - P-graph G, on n vertices, G, is not a (p, [(n - 2p) / (2cp)’I)- 
bipartite-Ramsey graph for any p 2 1. In particular, G, is not a (c’n’’(’+’), 
c’n”’”’)-bipartite-Ramsey graph, for an appropriately chosen constant 
c’ > 0. 

Theorem 1.4. Let P be a sequence of k real polynomials in x , y ,  and n, 
where x , y  E R’. Then there exists a positive constant c = c(P) such that 
every I - P-graph G, on n vertices is not a c eCcG-Ramsey graph, where 
CI > 0 is a constant depending only on 1. 

Theorem 1.5. Let P be a real polynomial in the difference x - y and in n, 
and let G, be the graph on the n vertices {1,2, ..., n} in which for 
1 I i < j 5 n {i, j }  is an edge iff P(i,j,n) > 0. Then there is a constant 
c = c (P) > 0 such that for all n G, is not a cV6-Ramsey-graph. 

The estimate given in Theorem 1.5 is best possible, up to the value of c ,  
as shown by the polynomial (x - y)’ - n. 

Our paper is organized as follows. In Section 2 we show how a theorem 
of Warren from real algebraic geometry supplies a bound on the number of 
subgraphs of a certain type of a polynomial graph. In Section 3 we show 
that this bound easily implies Theorem 1.3. Together with a method similar 
to the one used by Erdos and Hajnal in [6] it also provides a proof of 
Theorem 1.4. The proof of Theorem 1.5 is given in Section 1.4. The final 
Section 5 contains some concluding remarks and open problems. 

2. SIGN PATTERNS AND TRACES 

Let Q = (el,. . . , Q m )  be a sequence of m polynomials in t real variables. 
For each point x E R‘, the vector (sign Q,(x), . . . , sign Q m ( x ) )  E { - l , O ,  1)” 
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is a sign-vector of Q. Let s(Q I , .  . . , Q,,)  denote the total number of sign-vec- 
tors of Q, as x ranges over all points of Rr. Warren [lo] proved an upper 
bound for the number of sign patterns of Q that lie in {-1,1}" in terms of 
t ,m,  and the degrees of the polynomials Q. His bound can be easily ex- 
tended to bound s(Q1, .  . . ,em) and give the following estimate: 

Lemma 2.1 (Warren [lo]; see also [l], [2]). Let Q = ( Q I , .  . . , Q m )  be a se- 
quence of m polynomials in t real variables. If the degree of each Qi is at 
most d and m 2 t ,  then 

8 e d m  ' 
s(Ql,. . . ,QJ 5 (7). I 

The next simple corollary of the above lemma is not required for the 
proofs of our main theorems, but may be interesting in its own right. 

Corollary 2.2. Let P = (PI, .  . . , P k )  be a sequence of k real polynomials 
in x ,  y, and n where x ,  y E R'. Then, there exists a constant c = c(P) > 0 
such that the total number of nonisomorphic 1 - P-graphs on n vertices 
is at most 

(c n)"'. 

ProoJ: Let u l , .  . . , u,  be the vertices of an 1 - P-graph G on n vertices, 
and let z l r .  . . , z ,  E R' be the values associated with the vertices. Then G 
is determined by the signs of the k . ( ; )  polynomials PJzI , z , ,n)  
(1 d s 5 k ,  1 5 i < j I n) in the 1 - n  real variables that are the coordi- 
nates of the vectors 2,. Let d be the maximum degree of a P, and define 
c = ( 4 e d k ) / l .  The result (for k(2) 2 In) now follows from Lemma 2.1. By 
increasing c, if necessary we can make sure that the bound will hold for the 
values of n for which k(l)  < In, as well. I 

Observe that any induced subgraph of a P-graph is also a polynomial 
graph (with slightly different polynomials obtained from those of P by 
shifting n). Thus, the last Corollary bounds the number of induced sub- 
graphs with a given number of vertices of any P-graph. 

We next prove a similar lemma that will be useful later. If G = (V ,E)  
is a graph, U G V and u E V\U, then the trace of u on U is 
tr(u,U) = {u E U : u u  E E}, i.e., it is the set of all neighbors of u in (1. 

Lemma 2.3. Let P = (PI, .  . . , PJ be a sequence of real polynomials in 
x ,  y, and n where x ,  y E R'. Then there exists a constant c = c(P) > 0 such 
that for any 1 - P-graph G, = (V, E) and for any subset U C V, the num- 
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ber of distinct traces of vertices in V\U on U is at most ( c ( U  1 )’+I. More- 
over, if U is the set of I U I first vertices.of G, (in the order used in the rep- 
resentation of G, as a P-graph) then the number of distinct traces of ver- 
tices in V\U on U is at most (c I u I )’. 
ProoJ Let {z,  : u E U }  be the values in R‘ corresponding to the members 
of U in the realization of G, as a P-graph. For u E V\U, let z ,  E R’ be the 
value corresponding to u. Recall that in the definition of a P-graph there is 
a linear order on the vertices. The trace of u on U is determined by the 
rank of u in this order as induced on U U {u} (for which there are I U I + 1 
possibilities) and by the signs of the 2k .  IU I polynomials Ps(zu , z , ,n )  and 
P,(z , , z , ,n) ( l  5 s 5 k,u  E U). In these polynomials, n and {z,;u E U }  
are fixed, and only z, varies as u varies. Thus there are only 1 variables, and 
the desired bound (for 2k I U I I I} follows from Lemma 2.1. By increasing 
c ,  if necessary, we can guarantee that the assertion of the lemma will hold 
for all values of 1 U 1 .  In case U is the set of I U I first vertices of G, the 
factor of IUI + 1 arising from the rank of u in U U {u} can be saved. 
(Also, in this case we may consider only the k I U I polynomials Ps(zu, z,,n), 
but this only affects the constant c). I 

It is worth noting that in the case 1 = 1 (considered in Conjecture l.l), 
Warren’s Theorem (Lemma 2.1) is not necessary, as in this case we only 
need a bound for the number of sign patterns of a family of one-variable 
real polynomials, which follows trivially from the fact that each of them 
does not have too many distinct real roots. 

3. RAMSEY GRAPHS AND BIPARTITE-RAMSEY-GRAPHS 

We start this section with the simple derivation of Theorem 1.3 from 
Lemma 2.3. Let P be a sequence of k real polynomials inx,  y, and n, where 
x , y  E R‘. Let c = c(P)  > 0 be the constant supplied by Lemma 2.3. Sup- 
pose, now that G = (V,  E) is an arbitrary 1-P-graph on n vertices. We have 
to show that for everyp I 1 G  is not (p,r(n - 2p)/(2cp)‘l)-bipartite-Ram- 
sey; i.e., either G or its complement 6 contains a complete bipartite graph 
with classes of vertices of sizesp and [(n - 2p)/(2cp)’l. If n s 2p there is 
nothing to prove. Suppose, thus, that n > 2p and let U be the set of first 2p 
vertices of G,. By Lemma 2.3, the number of distinct traces of vertices 
in V\U on U is at most (2cp)’. Hence, there is a set W C V,  
IWI I (n - 2p)/ (2cp)’ such that each w E W has exactly the same trace on 
U. Put Ur = {u E U; wu E E for all w E W} and U2 = {u E U :  wu e E for 
all w E W}. Clearly U is the disjoint union of U1 and U2 and hence either 
lull 2 p or IU21 2 p (or both). In the first case, G contains a complete bi- 
partite graph on the classes of vertices U 1  and W. In the second case the 
complement graph 6 contains a complete bipartite graph on U2 and W 
This completes the proof of Theorem 1.3. I 
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The nonbipartite case, considered in Theorem 1.4, is somewhat more 
complicated. We first define, by induction, a family 9 of perfect graphs as 
follows. The trivial graph K 1  belongs to 9. If H I  = (Vl ,El )  and 
H 2  = ( V z , E z )  are two members of 9 then their disjoint union, as well as 
their join (i.e., the graph obtained from their disjoint union by adding all 
edges {uIu2 : u2 E Vl, u2 E VZ}) are members of 9. Clearly every induced 
subgraph of a member of 9 belongs to 9 and one can easily show by induc- 
tion that all graphs in 9 are perfect. Therefore, if a graph F E 9 has rn ver- 
tices then either F or F contains a complete graph on at least fi vertices. 
(This is because if F contains no KIv,-, then it is 1 6 1  - 1-colorable and 
hence contains an independent set of size at least &). We conclude that 
in order to show that a graph is not a good Ramsey graph is suffices to 
show that it contains a relatively large induced subgraph from 9. 

Proposition 3.1. Let G = (V, E) be a graph on n vertices in which for ev- 
ery U G V the number of distinct traces of vertices in V\U on U is at most 
(clUly+' where 1 L 1 is an integer. Then G contains an induced subgraph 
from 9 on at least 

_ .  1 -  2VZlogn/(l+I) 
2c 

vertices. 

Proof: We apply induction on n. Since obviously c 2 1 (consider sets U of 
cardinality l), and since every graph on at most 3 vertices is in 9 there is 
nothing to prove for n 5 16. Suppose the proposition holds for all n' < n 
and let us prove it for n (n > 16). Let G = (V, E) be a graph on n vertices 
satisfying the assumptions. Let f be the maximum cardinality of an in- 
duced subgraph of G that belongs to 9, and denote b U (U L V, lUl = f )  
its set ofvertices. CIearlyf 2 3. Iff L (1/2c)2 2 1 0 g n ' ( ' + l )  there is nothing to 
prove and hence we may assume that 

This and the fact that c 2 1 and n > 16 imply that f < n/2 and that 
I / ( ~ ~ ) / + I  ., 2/+1-\/2(/+/)1ogn and hence that 

By the assumptions, there are at most (cf)'+' distinct traces on U. Thus, 
there is a set W C V\U of cardinality (WI L [(n - f)/(cfy+'l such that 
each w E Whas the same trace on U. By the induction hypothesis there is 
a subset Y of W satisfying 
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such that the induced subgraph of G on Y belongs to 9. Define 
U1 = {u E U : u y  E E for all y E Y }  and U2 = {u E U : u y  e E for all 
y E Y } .  Since all vertices of Y have the same trace on U, U is the disjoint 
union of U1 and U2.  Moreover, the induced subgraphs of G on Ul U Y and 
on U2 U Y both belong to 9, and at least one of them has at least 
f/2 + IYI vertices. By the maximality of f this implies that 
f/2 + IYI I f,i.e.,f I 21YI. Combining this with (2), the fact that 
IWI I [(n - f)/(cfY+'l, (l), and the monotonicity of the exponential and 
the logarithmic function we conclude that 

(3) 

To complete the proof it thus suffices to check that the right hand side of 

f 2 IyI 1 2 ~ ( 2 / ( ~ + ~ ) ~ i o g ( n . ~ - \ / 2 ( l t l l l o g n )  
C 

(3) is at least (1/2c) 2'2'0gn/(1+1), or equivalently, that 

However, this last inequality is valid, since 

= d&(- - Vlog n - V2(1 + 1)log n + 1) 

I JL(s - +og n - V2(1 + 1)log n + - 
1 + 1  l + l )  2 

as needed. This completes the proof of the proposition. I 

Corollary 3.2. Let P be a sequence of k real polynomials in x ,  y, and n, 
where x ,  y E d. Then there exists a positive constant a = a (P) such that 
every 1 - P-graph G, on n vertices is not an a . 2~'ogn'(2(1+1))-Ramsey graph. 

ProoJ: By Lemma 2.3 there is a positive constant c = c(P) such that the 
number of distinct traces on any subset U of vertices of G, is at most 
(c/U[)'+'.  By Pro osition 3.1, G, contains an induced perfect graph on 

graph on at least 6 vertices, completing the proof. I 

rn I (1/2c)2 + 2 'ogn ' ( '+1 )  vertices. Hence, either G or 6 contain a complete 
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Corollary 3.2 implies, of course, Theorem 1.4. For the case 1 = 1 it 
shows that for every 1 - P-gr3h G ,  on n vertices either G or contains a 
complete subgraph on a 2'liZ"'logn vertices, where a is a positive constant de- 
pending only on P. 

4. POLYNOMIALS IN (x - y )  

In this section we prove Theorem 1.5 that deals with polynomial graphs de- 
fined by a polynomial in the difference x - y and in n. We need the fol- 
lowing lemma. 

Lemma 4.1. For every integer k 2 1, there is a positive constant c!, > 0 
such that for any family of k disjoint open intervals {(a,, 6,)}:=1, where 
1 5 a I < b l  I a? < bz I . . . 5 ak < br are 2k integers, there is a set 
S C (1, . . . , b,} of at least ck II,"=, (6, / a , )  integers, such that for any 
s , r  E S,s < t ,  the differences t - s belongs to Uf=l(a,,6,). 

ProoJ: We apply induction on k and prove the lemma with ck = 1/4,. (This 
estimate can be easily improved; we make no attempt to optimize the con- 
stant c k ) .  For k = 1, if b l  s 4a1, S can be an arbitrary 1-element subset 
of (1,. . . ,bl}(e.g., S = (1)). If 6,  > 4 a I ,  let S be the set of all positive 
multiples of 2 a l ,  which are smaller than b l .  Then IS1 2 ( b 1 / 2 a l )  - 1 > 
(1/4)(b,/ul) and for any s , t  E S,s < t , a l  < 2a l  I f - s < t < 61, as 
needed. Suppose the assertion of the lemma holds for k (with ck = 1/4k), 
and let us prove it for k + 1. Let {(a,, 6,)}:=+,' be a set of k + 1 open inter- 
vals, where 1 d a l  < b 1  I a 2  < b2  I . . . I < bk+l are integers, By 
the induction hypothesis there is a set 5 G (1,. . . , br }  such that IS1 2 
(1/4A) II,"=,(6, /a , )  and such that for every s, t E 3, s < t ,  t - s E Uf=l(a,, b,). 
Consider two possible cases. 

In this case, 131 2 (l/4'+')fl,"i+l1 (6, / a l )  = ch+ln,"i+I' (b, / a l )  and hence the 
set S itself can serve as our S. 

Let T be the set of all nonnegative multiples of 2ak,,(including 0) which 
are strictly smaller than bk+I - ak+I. Then [TI L ( b ~ + ~  - ak+1)/(2ak+1) > 
(1 /4) (bk+l /~k+l ) .  Define s = 3 + T = (S + t : S  E S , t  E T } .  Since the 
difference between any two distinct numbers in T is bigger than the maxi- 
mum number in s, IS1 = Is(.ITI 2 (1 /4k+1)~ ,"~11(6~+1 /ak+l ) .  Also, if SI + t l  
and SZ + t 2  are two numbers in S = S + T with S, E S,r ,  E T, and 
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S1 + t l  < Sz + t,, then (S, + t z )  - (S1 + t l )  = (Sz - S1) + ( f 2  - t l ) .  If 
t 2  > t I  then 

and 

i.e., the difference is in the interval (atl, bk+l ) .  Otherwise t 2  = t l  (since if 
t z  < t ,  then t z  + S2 < t l  + S1, contradicting the assumption), and then 
Sz > S1 and 

by the choice of 3. 

completes the induction and the proof. 
Thus S satisfies the conclusion of the lemma for k + 1 intervals. This 

I 

Proof of Theorem 2.5. Let P = P(x,  y, I) be a real polynomial in the dif- 
ference x - y and in I, and let {G,} be the sequence of graphs where G, 
is a graph on the set of n vertices {1,2,. . . , n} in which for 1 5 i < j 5 
n {i,i} is an edge iff P(i, j, n) > 0. We must show that for every n either G, 
or G, contains a complete subgraph on m 1 CG vertices, where c = 
c(P) > 0 is a constant depending only on P. Let k be the (x - y)-degree of 
P (i.e., the largest power of x - y appearing in the standard representation 
of P as a sum of monomials in x - y and I). We claim that for every n ei- 
ther G, or G, contains a complete subgraph on at least (1/2k+’) vertices. 
Indeed, let g(y - x )  = P(x ,  y, n) be the polynomial (in the one variable 
y - x )  obtained from P ( x , y ,  I) by substituting I = n. If g(z) is identically 
zero or if it has no real roots in the closed interval [l, n], then G, is either 
complete or empty and the claim is trivial. Otherwise, g ( z )  has at most k 
real roots with distinct integer parts u 1  < uz < . . . < u,(s 5 k) in [l,n]. 
These s roots can be used to define s + 1 intervals ZI, . . . , as follows: 

= ( [ u s ] ,  n). Set J 1  = { j :  1 5 j 5 s + 1 and P ( z )  is positive for all the 
integers z E Z,}, J z  = { j  : 1 I j I s + 1,1, contains at least one integer and 
P ( z )  is negative for all the integers z E Z,}. One can easily check that 
{1,2,. . . ,s + 1) = J 1  U J z  and J 1  n J 2  = 0. For convenience define uo = 

1, 

11 = [I, Lull), IZ = (lull, 1 ~ 2 1 ) ,  1 3  = ( L ~ z J  3 Lwl) 9.. - 9  1 s  = (LVs-11, LuxJ), 

= n and r, = Lu,J for each j .  

By Lemma 4.1 there exists a set S1 LZ {1,2,. . . , n}, lSll 2 (1/4”l’) 
IIIEJ, (r,/r,-l) such that for every s, t E S1, with s < t, the difference t - s 
lies in UIEJ,Z,. Therefore P(s, t ,  n) > 0 for all s, t E S, with s < t, i.e., Sl is 
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the set of vertices of a complete graph of G,. Similarly, Lemma 4.1 implies 
the existence of a set Sz C {1,2, .  . . , n}, ISz\ 2 (1/41’2’) IIJEJ2(r,/rJ-l) such 
that for every s, t E Sz with s < t ;  t - s E UIESZZJ and hence P(s,  t, n) < 0. 
This means that Sz is the set of vertices of an independent set in G,. Now 

n .  

and thus either S, or Sz has cardinality at least 
This completes the proof of the theorem. 

2 (1 /2k+1)f i .  
I 

5. CONCLUDING REMARKS AND OPEN PROBLEMS 

1. The assertions of all the results in this paper remain true even if we 
do not assume that the functions E(x, y, n) are polynomials in all variables; 
the dependence on n may be a nonpolynomial one, as long as there is a 
bound d such that for every substitution for n the resulting polynomial is of 
degree at most d in x and y. In fact, we may define a sequence of graphs 
{G,,}, where each G ,  is defined by a different set of polynomials in x and y, 
such that all polynomials are of degree at most d andx,y E R‘. The proofs 
in the previous sections clearly work for this more general case too. 

2. It seems plausible that Conjecture 1.1 holds even with E = 1/2 
(which would then be best possible). In fact, we believe that for every 
sequence P = (f,, . . . , P r )  of polynomials i n  the three variables x ,  y ,  and n 
there is a constant c = c(P) > 0 such that no 1 - P-graph G ,  on n vertices 
is a c 6 - R a m s e y  graph. (Note that by Theorem 1.3 no such graph 
is (c’&,c’&)-bipartite-Ramsey graph for some c’ = c‘(P) > 0). 

ACKNOWLEDGMENT 

I would like to thank L. Babai and V. Rod1 for many helpful comments. 

References 

[l] N. Alon, The number of polytopes, configurations and real matroids. 
Mathematika 33 (1986) 62-71. 

[2] N. Alon and E. R. Scheinerman, Degrees of freedom versus dimension 
for containment orders. Order 5 (1988) 11-16. 

[3] L. Babai, Open problem. Combinatorics, Proceedings of the Confer- 
ence in Keszthely, Hungary, 1976. Vol. 2. North Holland (1978) 1189. 

[4] P. Erdos, Some remarks on the theory of graphs. Bull. Am. Math. Soc. 
53 (1947) 292-294. 



RAMSEY GRAPHS AND REAL POLYNOMIALS 661 

[5] P. Erdos, On the combinatorial problems which I would most like to 

[6] P. Erdos and A. Hajnal, Ramsey type theorems. Discrete Applied 

[7] P. Frank1 and R. M. Wilson, Intersection theorems with geometric 

[8] R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory. 

[9] F.P. Ramsey, On a problem of formal logic. Proc. London Math. 

[lo] H.E. Warren, Lower bounds for approximation by nonlinear mani- 

see solved. Combinatorica 1 (1981) 25-42. 

Math. 25 (1989) 37-52. 

consequences. Combinatorica 1 (1981) 357-368. 

Wiley Interscience, New York (1980). 

S~C. (2) 30 (1930) 264-286. 

folds. Trans. Am. Math Soc. 133 (1968) 167-178. 




